A novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments.
نویسندگان
چکیده
To understand how protein phosphorylation modulates cytoskeletal organization, we used immunofluorescence microscopy to examine the effects of okadaic acid, a serine/threonine protein phosphatase inhibitor, and taxol, a microtubule-stabilizing agent, on stable (acetylated and detyrosinated) microtubules, vimentin intermediate filaments and other cytoskeletal elements in CV-1 cells. Okadaic acid caused major changes in both stable microtubules and vimentin intermediate filaments, but through independent mechanisms. At 300 nM, okadaic acid caused apparent fragmentation and loss of stable microtubules which was not prevented by prior exposure to K252a. In contrast, major reorganization of vimentin intermediate filaments elicited at 750 nM okadaic acid was prevented by prior exposure to K252a. Taxol pretreatment blocked the effects of okadaic acid on stable microtubules and vimentin intermediate filaments. Recent reports have revealed that taxol can activate cellular signal transduction pathways in addition to its known ability to promote microtubule stabilization, so the possibility that taxol-induced resistance of vimentin intermediate filaments to okadaic acid was through a microtubule-independent mechanism involving direct phosphorylation of intermediate filament proteins was explored. Vimentin immunoprecipitation from cytoskeletal extracts from 32P-labeled cells revealed that taxol (4 microM, 1 or 2 hours) caused about a 2-fold increase in vimentin phosphorylation. This phosphorylation was recovered exclusively in cytoskeletal vimentin, in contrast to the increased phosphorylation of soluble and cytoskeletal vimentin caused by exposure to 750 nM okadaic acid. Phosphorylation of soluble and cytoskeletal vimentin from cells exposed to taxol (4 microM, 1 hour) then okadaic acid (750 nM, 1 hour) was comparable to taxol-treatment alone. These findings demonstrate a novel new activity of taxol, induction of vimentin phosphorylation, that may impact on vimentin organization and stability.
منابع مشابه
A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules.
A protein of M(r) 210,000 was identified in 3T3 cells by immunoblotting and by immunoprecipitation with a monoclonal antibody MA-01. The protein was thermolabile and was located on 3T3 microtubules prepared by taxol-driven polymerization in vitro. On fixed cells the MA-01 antigen was located on interphase and mitotic microtubular structures, vinblastine paracrystals, taxol bundles and colcemid-...
متن کاملAssociation of vimentin intermediate filaments with the centrosome.
SW-13 cells that lack cytoplasmic intermediate filaments (IFs) were stably transfected with a human vimentin cDNA expression vector. Isolated subclones displayed two prevalent patterns of vimentin distribution as observed by indirect immuno-localization: (1) cytoplasmic filaments characteristic of a vimentin IF network; and (2) a distinct, juxtanuclear focus with limited filamentous extensions....
متن کاملPhosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimen...
متن کاملNovel features of intermediate filament dynamics revealed by green fluorescent protein chimeras.
In order to study the dynamic behavior of intermediate filament networks in living cells, we have prepared constructs fusing green fluorescent protein to intermediate filament proteins. Vimentin fused to green fluorescent protein labeled the endogenous intermediate filament network. We generated stable SW13 and NIH3T3 cell lines that express an enhanced green fluorescent protein fused to the N-...
متن کاملVimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA
The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 13) شماره
صفحات -
تاریخ انتشار 1998